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Content-based indexing of images and video

ALEX PENTLAND

TheMedia Laboratory,Massachusetts Institute ofTechnology, 20Ames Street, Cambridge,MA02139,USA
(sandy@media.mit.edu)

SUMMARY

By representing image content using probabilistic models of an object's appearance we can obtain seman-
tics-preserving compression of the image data. Such compact representations of an image's salient features
allow rapid computer searches of even large image databases. Examples are shown for databases of face
images, a video of American sign language (ASL), and a video of facial expressions.

1. INTRODUCTION: THE PROBLEM

The traditionalmodel for the search of stored images and
video, both as amodel of humanmemory andas amodel
for computerized search, hasbeen to createpropositional
annotations that describe the content of the image, and
then enter these annotations into a standard database or
semanticnet.The images themselves arenot really partof
the memory or database; they are only referenced by
computer text strings ormental propositions.

The problem with this approach is that the old
saying à picture is worth 1000 words' is an understate-
ment. In most images there are literally hundreds of
objects that could be referenced, and each imaged
object has a long list of attributes. Even worse, spatial
relationships are important in understanding image
content, so that complete annotation of an image with
n objects each with m attributes requires O(n2m2) data-
base entries. And if we must also consider relations
among images, such a memory indexing model quickly
becomes intractable.

During the last few years, however, there has been a
major change in thinking about image databases. The
key conceptual breakthrough was the idea of content-
based indexing, allowing images and audio to be searched
directly instead of relying on keyword (or propositional)
annotation. The Massachusetts Institute of Technology
(MIT) `Photobook' system (Pentland & Picard 1994;
Pentland et al. 1994) together with e¡orts such as the
IBM `query-by-image-content' (Faloutsos et al. 1994)
system or the ISS project in Singapore (Smoliar &
Zhang 1994), have demonstrated that such a search is
both possible and useful. The idea has since become
the focus of dozens of special journal issues, workshops,
and the like. There have also been considerable
commercial successes with this technology. Photobook-
like technology is now available as an IBM Ultimedia
Manager system and as the Virage Engine (Virage).
Consequently simple examples of content-based
indexing is now widely available on a variety of plat-
forms and as an option within several traditional
database systems.

In this paper I will review the Photobook concept of
content-based indexing, as developed by Professors
Picard, Sclaro¡, and myself and originally described
in an earlier paper (Pentland et al. 1996), and give
several examples drawn from recent work by my
students and myself. For a full account of our research,
including current papers, some computer code, and on-
line demonstrations, see our web site at (http://www-
white.media.mit.edu/vismod).

(a) The problem: semantic indexing of image
content

The problem is that to make a user- and purpose-
independent image database we must annotate every-
thing in the images and all the relations between
them. Text databases avoid this problem by using
strings of characters e.g., words that are a consistent
encoding of the database's semantic content. Thus,
questions about the database's semantic content can be
answered by simply comparing sets of text strings.
Because this search is e¤cient, users can search for
their answers at query time rather than having to pre-
annotate everything.

To accomplish the same thing for image databases,
we must be able to e¤ciently compare the images
themselves, to see if they have the same, or more gener-
ally similar, semantic content. There is, of course, a
trade-o¡ between how much work you do at input
time and how much you do at query time. For instance,
one could try to precompute the answers to all possible
queries, so that no search would be required. Alterna-
tively, one could search the raw images themselves,
repeating all of the low-level image processing tasks
for each query.

For image databases there is a compelling argument
for employing a pre-purposive `iconic' level of represen-
tation. It does not make sense to try to precompute a
g̀eneral purpose'öa completely symbolic representa-
tion of image contentöbecause the number of possibly
interestinggeometric relations is combinatorially explos-
ive. Consequently, the output of our precomputation
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must be image-like data structures where the geometric
relationships remain implicit. On the other hand, it
does make sense to precompute as much as is possible
because low-level image operations are so expensive.

These precomputed image primitives must play a
role similar to that of letters and words in a database
query sentence. The user can use them to describe
`interesting' or `signi¢cant' visual events, and then let
the computer search for instances of similar events. For
instance, the user should be able to select a video clip of
a lush waterfall, and be able to ask for other video
sequences in which more of the same s̀tu¡ ' occurs. The
computer would then examine the precomputed
decomposition of the waterfall sequence, and charac-
terize it in terms of texture-like primitives such as
spatial and temporal energy. It could then search the
precomputed decomposition of other video clips to
¢nd places where there is a similar distribution of
primitives.

Alternatively, the user might circle a `thing' like a
person's face, and ask the computer to track that
person within the video clip, or ask the computer to
¢nd other images where the same person appears. In
this case the computer would characterize the person's
two-dimensional image appearance in terms of primi-
tives such as edge geometry and the distribution of
normalized intensity, and then either track this con¢g-
uration of features over time or search other images for
similarly-arranged conjunctions of the same features.
These two types of semantic indexing, using texture-

like descriptions of `stu¡ 'and object-like descriptions of
`things' constitute the two basic types of image search
operation in our system.These two types of description
seem to be fundamentally di¡erent in human vision,
and correspond roughly to the distinction between
mass nouns and count nouns in language. Note that
both types of image query can operate on the same
image primitives, e.g., the energy in di¡erent band-
pass ¢lters, but they di¡er in how they group these
primitives for comparison. The `stu¡ ' comparison
method pools the primitives without regard to detailed
local geometry, while the `things' method preserves
local geometry.

2 . SEMANTICS -PRESERVING IMAGE
COMPRESSION

The ability to search at query time for instances of
the same or similar image events depends on the two
conditions discussed below.

(i) There must be a similarity metric for comparing
objects or image properties, e.g. shape, texture, colour,
object relationships, that matches human judgements of
similarity. This is not to say that the computation must
somehow mimic the human visual system, but rather
that computer and human judgements of similarity
must be generally correlated. Without this, the images
that the computer ¢nds will not be those desired by
the human user.

(ii) The search must be e¤cient enough to be inter-
active. A search that requires minutes per image is
simply not useful in a database with millions of images.
Furthermore, interactive search speed makes it possible

for users to recursively re¢ne a search by selecting
examples from the currently retrieved images and
using these to initiate a new select^sort^display cycle.
Thus, users can iterate a search to quickly `zero in on'
what they are looking for.

Consequently, we believe that the key to solving the
image database problem is semantics-preserving image
compression, compact representations that preserve
essential image similarities. This concept is related to
some of the s̀emantic bandwidth compression' ideas
put forth in the context of image compression (Picard
1992). Image coding has utilized semantics primarily
through e¡orts to compute a compact image represen-
tation by exploiting knowledge about the content of the
image. A simple example of semantic bandwidth
compression is coding the people in a scene using a
model specialized for people, and then using a di¡erent
model to code the background.

In the image database application, compression is
no longer the singular goal. Instead, it is important
that the coding representation be (i) `perceptually
complete', and (ii) `semantically meaningful'. The ¢rst
criterion will typically require a measure of perceptual
similarity. Measures of similarity on the coe¤cients of
the coded representation should roughly correlate with
human judgements of similarity on the original
images.

The de¢nition of `semantically meaningful' is that
the representation gives the user direct access to the
parts of the image content that are important for their
application.That is, it should be easy to map the coe¤-
cients that represent the image to c̀ontrol knobs' that
the user ¢nds important. For instance, if the user
wishes to search among faces, it should be easy to
provide control knobs that allow selection of facial
expressions or selection of features such as moustaches
or glasses. If the user wishes to search among textures,
then it should be easy to select features such as periodi-
city, orientation, or roughness.

Having a semantics-preserving image compression
method allows you to quickly search through a large
number of images because the representations are
compact. It also allows you to ¢nd those images that
have perceptually similar content by simply comparing
the coe¤cients of the compressed image code. Thus, in
our view the image database problem requires develop-
ment of semantics-preserving image compression
methods.

(a) Algorithm design

How can one design `semantics-preserving image
compression' algorithms for particular objects or
textures? The general theoretical approach is to use
probabilistic modelling of low-level, two-dimensional
representations of regions of the image data that corre-
spond to objects or textures of interest.

To perform such modelling, one ¢rst transforms
portions of the image into a low-dimensional coordinate
systemthatpreservesthegeneralperceptualqualityof the
target object's image, and then use standard statistical
methods, such as expectation maximization of a
Gaussian mixture model, to learn the range of
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appearancethatthetargetexhibits inthatnewcoordinate
system.The result is a very simple, neural-net-like repre-
sentation of the target class's appearance, which can be
used to detect occurrences of the class, to compactly
describe its appearance, and to e¤ciently compare
di¡erent examples fromthe same class.

As di¡erent parts of the image have di¡erent charac-
teristics, we must use a variety of representations, each
tuned for a speci¢c type of image content. For instance,
to represent images of `things', which requires preserva-
tion of detailed geometric relations, we use the
Karhunen^Loe© ve transform (KLT), which is also
called the principal components analysis (PCA). It is a
classic mathematical result that the KLT provides an
optimally-compact linear basis with respect to root
mean square error for a given class of signal. For char-
acterization of texture classes, we use an approach
based on theWold decomposition. This transform sepa-
rates `structured' and `random' texture components,
allowing extremely e¤cient encoding of textured
regions, e.g., by using the KLT on the separated
components, while preserving their perceptual quali-
ties (Picard & Kabir 1993).

Given several examples of a target class, O, in such a
low-dimensional representation, it is straightforward to
model the probability distribution function, p(xjO), of
its image-level features (x), as a mixture of Gaussians,
thus obtaining a low-dimensional, parametric appear-
ance model for the target class (Moghaddam &
Pentland 1995). Once the target class's probability
distribution function (PDF) has been learned, we can
use Bayes' rule to perform `maximum a postieriori'
(MAP) detection and recognition.
The use of parametric appearance models to charac-

terize the PDFof an object's appearance in the image is
a generalization of the idea of view-based representa-
tion, as advocated by Ullman & Basri (1991) and
Poggio & Edelman (1990). As originally developed,
the idea of view-based recognition was to accurately
describe the spatial structure of the target object by
interpolating between various views. However, in
order to describe natural objects such as faces or
hands, we have found it necessary to extend the notion
of `view' to include characterizing the range of
geometric and feature variation, as well as the likeli-
hoods associated with such variation.

This approach is typi¢ed by our face recognition
research(Turk&Pentland1991;Moghaddam&Pentland
1995) which uses linear combinations of eigenvectors to
describe a space of target appearances, and then charac-
terizes the PDF of the target's appearance within that
space.This method has been shown to be very powerful
for detection and recognition of human faces, hands, and
facialexpressions (Moghaddam&Pentland1995).Other
researchers have used extensions of this basic method to
recognize industrial objects and household items
(Murase&Nayar1994).

(b) Comparison with other approaches

During the last few years many researchers have
proposed a variety of image indexing methods, based
on shape, colour, or combinations of such indices
(Faloutsos et al. 1994; Smoliar & Zhang 1994). The
general approach is to calculate an approximately
invariant statistic, such as colour histogram or invar-
iants of shape moments, and use that to stratify or
partition the image database. Such partitioning allows
users to limit the search space when looking for a parti-
cular image, and has proven to be quite useful for small
image databases.

The di¡erence between these methods and ours is that
they emphasize computinga discriminant that can reject
many false matches, whereas ours can encode the image
data to the accuracy required to retain àll'of its percep-
tually salient aspects. Generally speaking, the
coe¤cients these earlier e¡orts have produced are not
su¤ciently meaningful to reconstruct the perceptually
salient features of the image. For instance, one cannot
reconstruct an image region from its moment invariants
or its colour histogram. In contrast, the models we
present use coe¤cients which allow reconstruction.
Figure 1 shows three reconstructions using appearance,
shape, and texture descriptions of image content.

In our view, the problem with using invariants or
discriminants is that signi¢cant semantic information is
irretrievably lost. For instance, do we really want our
database to think that apples, Ferrarris, and tongues are
`the same' just because they have the same colour histo-
gram? Discriminants give a way to limit search space,
but do not answer `looks like' questions except within
constrained data sets. In contrast, when the coe¤cients
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coe¤cients. From Pentland et al. (1996).
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provide a perceptually complete representation of the
image information, then things the database thinks are
`the same'actually look the same.
Another important consequence of representational

completeness is that we can ask a wide range of ques-
tions about the image, rather than being limited to
only a few prede¢ned questions. For instance, it
requires only a few matrix multiples per image to
calculate indices such as colour histograms or moment
invariants from our coe¤cients. The point is that if you
start with a relatively complete representation, then
you are not limited in the types of questions you can
ask; whereas, if you start by calculating discriminants,
then you are limited to queries about those particular
measures only.

3. THE PHOTOBOOK SYSTEM

Photobook is a computer system that allows the user
to browse large image databases quickly and e¤ciently,
using both text annotation information in an arti¢cial
intelligence database and by having the computer
search the images directly based on their content (Pent-
land & Picard 1994; Pentland et al. 1996). This allows
people to search in a £exible and intuitive manner,
using semantic categories and analogies, e.g., `show me
images with text annotations similar to those of this
image but shot in Boston', or visual similarities, e.g.,
`show me images that have the same general appear-
ance as this one'.

Interactive image browsing is accomplished using a
Motif interface. This interface allows the user to ¢rst
select the category of images they wish to examine;
e.g., pictures of white males over 40 years of age, or
images of mechanic's tools, or cloth samples for
curtains. Photobook then presents the user with the
¢rst screenful of these images (see ¢gure 4); the rest of
the images can be viewed by `paging' through them one
screen at a time.

Users most frequently employ Photobook by selecting
one (or several) of the currently-displayed images, and
asking it to sort the entire set of images in terms of their
similarity to the selected image or set of images. By
selecting several example images the user is providing
information about the distribution of visual parameters
that characterize items of interest. Photobook uses such
multiple examples to make an improved estimate of the
search parameters. Photobook then re-presents the
images to the user, now sorted by similarity to the
selected images. The select^sort^redisplay cycle typi-
cally takes less than 1 s. When searching for a
particular item, users quickly scan the newly-displayed
images, and initiate a new select^sort^redisplay cycle
every 2 or 3 s.

(a) An image database example: faces

One of the clearest examples of content-based
indexing is face recognition, and the Photobook face
recognition system was certi¢ed by the US Army as
being extremely accurate (Phillips et al. 1997). Face
recognition within this system is accomplished by ¢rst
determining the PDF for face images within a low-

dimensional eigenspace calculated directly from
contrast-normalized image data. Knowledge of this
distribution then allows the face and facial features to
be precisely located, and compared along meaningful
dimensions. The following gives a brief description of
how this is accomplished within the Photobook system
(for additional detail see Moghaddam & Pentland
(1995)).

(b) Face and feature detection

The standard detection paradigm in image proces-
sing is that of normalized correlation or template
matching. However, this approach is only optimal in
the case of a deterministic signal embedded in white
Gaussian noise. When we begin to consider a target
class detection problemöe.g., ¢nding a generic human
face or a human hand in a sceneöwe must incorporate
the underlying probability distribution of the object of
interest. Subspace or eigenspace methods, such as the
KLT and PCA, are particularly well-suited to such a
task since they provide a compact and parametric
description of the object's appearance and also automa-
tically identify the essential components of the
underlying statistical variability.

In particular, the eigenspace formulation leads to a
powerful alternative to standard detection techniques
such as template matching or normalized correlation.
The reconstruction error, or residual, of the KLT
expansion is an e¡ective indicator of a match. The resi-
dual error is easily computed using the projection
coe¤cients and the original signal energy. This detec-
tion strategy is equivalent to matching with a linear
combination of eigentemplates and allows for a greater
range of distortions in the input signal (including
lighting, and moderate rotation and scale). Some of
the low-order eigentemplates for a human face are
shown in ¢gure 2. In a statistical signal detection
framework, the use of eigentemplates has been shown
to be orders of magnitude better than standard
matched ¢ltering (Moghaddam & Pentland 1995).

Using this approach the target detection problem
can be reformulated from the point of view of a MAP
estimation problem. In particular, given the visual
¢eld, estimate the position (and scale) of the subimage
which is most representative of a speci¢c target class O.
Computationally this is achieved by sliding an m-by-n
observation window throughout the image and at each
location computing the likelihood that the given obser-
vation x is an instance of the target class Oöi.e., p(xjO).
After this probability map is computed, the location
corresponding to the highest likelihood can be selected
as the MAP estimate of the target location.
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(c) The face processor

This MAP-based face ¢nder has been employed as
the basic building block of an automatic face recogni-
tion system. The block diagram of the face ¢nder
system is shown in ¢gure 3. It consists of object detec-
tion and alignment, contrast normalization, feature
extraction, followed by recognition and, optionally,
facial coding. Figure 3b^ e illustrates the operation of
the detection and alignment stage on a natural image
containing a human face.

The ¢rst step in this process is illustrated in ¢gure 3c
where the MAP estimate of the position and scale of
the face are indicated by the cross-hairs and bounding
box. Once these regions have been identi¢ed, the esti-
mated scale and position are used to normalize for
translation and scale, yielding a standard `head-in-the-
box' format image, ¢gure 3d. A second feature detec-
tion stage operates at this ¢xed scale to estimate the
position of four facial features: the left and right eyes,
the tip of the nose and the centre of the mouth, ¢gure
3e. Once the facial features have been detected, the face
image is warped to align the geometry and shape of the
face with that of a canonical model. Then the facial
region is extracted, by applying a ¢xed mask, and
subsequently normalized for contrast. This geometri-
cally aligned and normalized image is then projected
onto the set of eigenfaces shown in ¢gure 2.

The projection coe¤cients obtained by comparison
of the normalized face and the eigenfaces form a
feature vector which accurately describes the appear-
ance of the face. This feature vector can therefore be
used for facial recognition, as well as for facial image
coding. Figure 4 shows a typical result when using the
eigenface feature vector for face recognition.The image
in the upper left is the one to be recognized and the
remainder are the most similar faces in the database,
ranked by facial similarity left to right, and top to
bottom. The top three matches in this case, are images

of the same person taken a month apart and at di¡erent
scales. The recognition accuracy of this system, de¢ned
as the percent correct rank-one matches, is 99%
(Moghaddam & Pentland 1995).

4 . VIDEO DATABASE EXAMPLES :
HUMAN EXPRESSION AND GESTURE

Given the rapid progress that has occurred with
databases of static images, researchers are now begin-
ning to turn their attention to the problem of video
databases. Interestingly, from a practical point of view
the problem of video databases is largely equivalent to
the problem of interpreting human behaviour in video.
That is, most video is about people, and the identity
and behaviour of the people in the video are the most
important element of its content.

Again, the general theoretical approach we have
taken to interpretation of video is that of MAP inter-
pretation on low-level, two-dimensional representa-
tions of regions of the image data (Pentland 1996). As
illustrated by the face database example above, the
appearance of a target class O, e.g., the probability
distribution function p(xjO) of its image-level features
x, can be characterized by use of a low-dimensional
parametric appearance model. Once such a PDF has
been learned, it is straightforward to use it in a MAP
estimator in order to detect and recognize target
classes. Behaviour recognition is accomplished in a
similar manner; these parametric appearance models
are tracked over time, and their time evolution
p(x(t)jO), characterized probabilistically to obtain a
spatio-temporal behaviour model (Pentland 1996).
Incoming spatio-temporal data can then be compared
to the spatio-temporal PDFof each of the various beha-
viour models using elastic matching methods, such as
dynamic time warping (Darrell & Pentland 1993) or
hidden Markov modelling (Starner & Pentland 1995).
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Figure 3. (a) The face processing system, (b) original image, (c) position and scale estimate, (d ) normalized head image, (e)
position of facial features.
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(a) Example: gesture recognition

The ¢rst example of this approach is recognition of
human hand gestures. To address this problem we
modelled the person's hand motion as a Markov
device, with internal states that have their own parti-
cular distribution of appearance and interstate
transition probabilities. Because the internal states of a
human are not directly observable, they must be deter-
mined through an indirect estimation process, using the
person's movements as measurements. One e¤cient
and robust method of accomplishing this is to use the
Viterbi recognition methods developed for use with
hidden Markov models (HMMs) (Rabiner & Juang
1996).

This general approach is similar to that taken by the
speech recognition community. The di¡erence in our
approach is that internal state is not thought of as being
just words or sentences; the internal states can also be
actions or even intentions.Moreover, the input is not just
audio ¢lterbanksbut also facial appearance, bodymove-
ment, and vocal characteristics (such as pitch)are used to
infer the user's internal state. One good example that
employs this approach to behaviour recognition is our
system for reading American sign language (ASL).

The ASL reader is a real-time system that performs
99% accurate classi¢cation of a forty-word subset of

ASL. Thad Starner is shown using this system in
¢gure 5. The accurate classi¢cation performance of
this system is particularly impressive because in ASL
the hand movements are rapid and continuous, and
exhibit large coarticulation e¡ect. (For additional
detail see Starner & Pentland (1995).)
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Figure 4. Searching for similar faces in a database, using the photobook image database tool (Pentland et al. 1996).

Figure 5. Real-time reading of American sign language,
with Thad Starner doing the signing
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(b) Example: expression recognition

A second example is the recognition of facial expres-
sion. We have addressed this problem by learning
spatio-temporal motion-energy appearance models for
the face. That is, for each facial expression we have
created a motion-energy appearance model that
expresses the amount and direction of motion that one
would expect to see at each point on the face. These
simple, biologically-plausible motion-energy models
can be used for expression recognition by comparing
the motion energy observed for a particular face to an
àverage' motion-energy model for each expression. To
classify an expression one compares the observed facial
motion energy with each of these models, and then
picks the expression with the most similar pattern of
motion.

This method of expression recognition has been
applied to a database of 52 image sequences of eight
subjects making various expressions. In each image
sequence the motion energy was measured, compared
to each of the models, and the expression classi¢ed,
generating the confusion matrix shown in ¢gure 6.
This ¢gure shows just one incorrect classi¢cation,
giving an overall recognition rate of 98.0%. (For addi-
tional details see Essa & Pentland (1994, 1995).)

5. CONCLUSION

The Photobook system is an interactive tool for
browsing and searching images and image sequences.
The key idea behind this suite of tools is semantics-preser-
ving image compression, which reduces images to a small
set of perceptually signi¢cant coe¤cients. Compact
semantics-preserving representations of image and
video content can be created by learning an appearance
model of a target class, 
, in a low-dimensional repre-
sentation, such as is produced by the KLT. Once the

probability distribution function p(xj
) of the target
class has been learned, we can use Bayes's rule to
perform MAP detection and recognition. The same
approach can be extended to time by use of methods
such as dynamic time warping and HMM.

The work described here was funded by British Telecom. I
thank co-authors and collaborators Rosalind Picard, Stan
Sclaro¡, Irfan Essa, Fang Liu, Baback Moghaddam,Matthew
Turk, Thad Starner, Bradley Horowitz, and Tom Minka for
their contributions. Portions of this paper have appeared in
Pentland (1996) and Pentland et al. (1996), and in the 1996
Image UnderstandingWorkshop Proceedings (San Francisco:
Morgan Kaufmann). Papers and technical reports on all
aspects of this technology are available at http://www-white.
media.mit.edu/vismod or by anonymous FTP from whitecha-
pel.media.mit.edu
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